


How Do I CODE 
on a CASIO fx-CP400 

1st Edition. 

First published in 2019. 

Questions about this publication should be directed to support@stepsinlogic.com 

Copyright © 2019. 
StepsInLogic. 

ISBN 978-0-9807619-9-3 

All rights reserved. Except under the conditions specified in the Copyright Act 1968 of Australia 
and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval 
system or be broadcast or transmitted in any form or by any means, electronic, mechanical, 
photocopying recording or otherwise, without the prior written permission of the copyright 
owners. 

This publication makes reference to the CASIO fx-CP400. This model description is registered 
trademarks of CASIO COMPUTER CO., LTD. 

CASIO® is a registered trademark of CASIO COMPUTER CO., LTD. 

Art by Taryn. 



- 2 -

Contents 

1. Before you start 3 

2. The basics of a program 4 

3 Breaking, If-Then-IfEnd, Lbl-Goto and variables 7 

4. Borrowing and modifying code 10 

5. Dot-to-dot and Pause 14 

6. The While loop – adding on and on and on … 16 

7. If-Then-Else-IfEnd within a While loop. Can you guess my number? 19 

8. Animation, using a For-Next loop 22 

9. Square roots, using a For-Next loop 24 

10. If-Then-IfEnd inside a For-Next; is that number prime? 27 

11. Whiles inside Ifs, (Whiles inside Ifs) inside Whiles,
finding prime factors 31 

12. Writing code in a text file and importing it to the fx-CP400 33 

13. Projects 34 

Appendix 1 – c_dtd1 35 

Appendix 2 – f_anim2 37 

Appendix 3 – f_amin3 38 

Appendix 4 – Functions and commands, where to find them 39 



- 3 -

1. Before your start
In this book you will execute pre-written lines of code (programs) and modify that code to make 
the program do as you want it too. 

Thus you should first load the pre-written programs that are referred to in this book into either 
your fx-CP400 hand-held or your ClassPad Manager (for ClassPad II Series) software. 

1.1 Loading the programs into the fx-CP400 (hand-held) 

1. Visit Casio Education Australia - casioeducation.com.au/resources/programs-
referred-to-in-the-how-do-i-code-book-for-the-fx-cp400/

2. Download the file progs4_CP400_book.vcp and save it to your chosen location.
3. Connect your fx-CP400 to your computer via USB and tap on USB Flash.
4. The flash memory drive of your fx-CP400 will mount on your computer.

Copy the file progs4_CP400_book.vcp into the AutoImport folder on the flash memory 
drive of your fx-CP400.

5. Disconnect the flash memory drive of your fx-CP400 from your computer.
Upon disconnecting the flash memory drive of your fx-
CP400, the programs will be automatically imported into 
a folder called progs. To see the programs: 

6. Launch the Program application
7. Choose the folder progs
8. Tap the drop-down arrow of the Name list.

1.2 Loading the programs into the ClassPad Mangaer (software) 

1. Visit Casio Education Australia - casioeducation.com.au/resources/
programs-referred-to-in-the-how-do-i-code-book-for-the-fx-cp400/

2. Download the file progs4_CP400_book.vcp and save it to your chosen location.
3. Double-click on the file progs4_CP400_book.vcp and it will open in the ClassPad 

Manager.
4. To see the programs, complete steps 6 to 8 as seen above.

Note 
Right-click (or Control-click) on the ClassPad Manager and look under Recent Documents to see that 
progs4_CP400_book.vcp is now number 1, or the open .vcp file. If you had content saved, prior to opening this file, 
it will not be accessible in this file. Choosing number 2, in the Recent Documents list, will re-open the .vcp file that 
was previously open. 

https://casioeducation.com.au/resources/programs-referred-to-in-the-how-do-i-code-book-for-the-fx-cp400/
https://casioeducation.com.au/resources/programs-referred-to-in-the-how-do-i-code-book-for-the-fx-cp400/
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2. The basics of a program

Open the program application and the Program 
Loader screen is seen. 

Choose the folder named progs. 

The first program in the list is named a_prog1. 

Tapping the script icon, , shows the lines of 
code in the program that has been selected. 

Tapping the computer icon, , will return you to 
the Program Loader screen. 
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2.1 Understanding the code of a_prog1 

The program is repeated below: 

ViewWindow -7.7,7.7,1,-4.6,4.6,1 

SetSketchColor ColorBlack 
Plot -2,1   
SetSketchColor ColorBlue  
Plot -4,1  
SetSketchColor ColorRed  
Plot -2,3 
SetSketchColor ColorGreen 
Plot -4,3 
SetSketchColor ColorBlue  
Line 0,0,3,3 
Pause 

Message "Ready for what's 
next?","Hey you!" 

SetSketchColor ColorMagenta 
Circle 1,1,2 

Message "That's all for now." 

Cls 
Stop 

Each line of code tells the fx-CP400 to do 
something when the program is executed. 

In this program, the calculator draws various 
objects on the Cartesian plane. 

ViewWindow 
xmin,xmax,scale,ymin,ymax,scale 
‘scales’ the plane. 

Plot x,y plots a point, at a specified location 
on the Cartesian plane, (-2,1) for example. 

Line a,b,c,d plots a line between two 
specified locations on the Cartesian plane, (0,0) 
and (3,3) in this case. 

Pause causes the program to pause, until the user 
commands it to continue. When paused,  is 
seen at the bottom right of screen. Tapping 
causes the pause to cease. 

Message “text”,”text” displays a message 
to the user. 

Circle x,y,r plots a circle with centre at a 
specified location on the Cartesian plane and 
with specified radius, centre (1,1) and radius 2 in 
this case. 

Cls clears all sketched objects from the screen. 

Stop stops the program from executing. It is 
not necessary to include this command. 

2.2 Running the code of a_prog1 

With a~prog1 selected in the Name field, 

tap . 
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Four points are plotted and a line is drawn, 
and things seem to have ground to a halt! 
 
 
 
 
Notice  bottom right of screen. This 
indicates the program has been paused by 
a command (Pause). 

	 	

	

Tap  and the program will continue. 
 
A message is displayed. Which is a type of 
pause with extras. 
 
 
 
Tap OK to continue. 

	 	

	

A magenta circle is drawn and another 
message is displayed. 
Tap OK. 

	
	

The cartesian plane is cleared of all the 
objects that were drawn, and the program 
is Done. 

Note that the line of code: 
 

• ViewWindow -7.7,7.7,1,-4.6,4.6,1 
• SetSketchColor ColorBlack 

 

sets the view window settings and the sketching colour of the fx-CP400 globally. Thus, after 
running this program, if you draw a graph, for example, the ViewWindow will remain as set by 
the program and any sketches on that graph will be the last colour set by the program. 

The ViewWindow can be changed by tapping , or selecting View Window from the  
menu. Sketch colour can be changed in the Graph Format setting also from the  menu 
 

If you did not see the axes/grid, as seen above, it will because of the settings on your machine in 
Graph Format. The program did not effect change on these settings, as it did the ViewWindow 
settings. You will see how to control these settings from within a program soon. 
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3. Breaking, If-Then-IfEnd, Lbl-Goto & variables 
	

	
	
	

	
	
	
	
	
	
	
	
	
	
	

	

 
 
 
 
With b_randl2 selected in the Name field, 

tap . 
 
 
 
 
 
It seems to go on forever! To break (terminate) a 

program, at any time press  on the 

keyboard or tap  at the bottom of the screen. 

Pressing  on the keyboard will pause the 
program. 
 

	
	
Tap OK, as prompted, and the lines of code of the 
program are shown. 

Tapping the computer icon, , will return you to 
the Program Loader screen. 
	

	
	

 
How are all those colourful lines being produced, and how is their position determined? 
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Cls 
ViewWindow -7.7,7.7,1,-4.6,4.6,1 
SetAxes Off 
SetGrid Off 
SetLabel Off 
SetCoord Off 
 
Lbl A 
 
rand(0,6)⇒x 
rand(-7,7)⇒a 
rand(-4,4)⇒b 
rand(-7,7)⇒c 
rand(-4,4)⇒d 
 
If x=0 

Then 
Line a,b,c,d,ColorBlack 

IfEnd 
 
If x=1 

Then 
Line a,b,c,d,ColorBlue 

IfEnd 
 
If x=2 

Then 
Line a,b,c,d,ColorRed 

IfEnd 
 
If x=3 

Then 
Line a,b,c,d,ColorMagenta 

IfEnd 
 
If x=4 

Then 
Line a,b,c,d,ColorGreen 

IfEnd 
 
If x=5 

Then 
Line a,b,c,d,ColorCyan 

IfEnd 
 
If x=6 

Then 
Line a,b,c,d,ColorYellow 

IfEnd 
 
Goto A 

The basic structure of this program is: 
 

1. Setup various things 
 

2. Place a Lbl (label) to ‘go (back) to’ at 
some point. 

 
3. Define 5 variables, x, a, b, c and d. 

 
4. Make seven If–Then-IfEnd statements 

based on the value of x. 
 

5. Draw a line, the colour of which is 
determined by the value of x. 

 
6. Go back (Goto) to Lbl 1 

 
The process continues ad infinitum or until you 
break it or until the batteries give up. J 
 
Note that Goto statements are used in this 
book to reduce the cognitive load for beginning 
programmers. 
	
	
Exercise 1 
In the program list you will be able to find 
programs named b_randl*, and randc*. 
 
Execute each of them and see how they 
behave. 
Predict how the code will be different to that 
seen opposite. 
 
Examine the code of each and see if you were 
correct. 
	

	

In this program we have chosen to define the colour of the lines using a different method than 
that used in a_prog1. 

• SetSketchColor ColorBlack , as seen in a_prog1, is a ‘global’ function. 
• Line a,b,c,d,ColorGreen , as seen in b_randl2, is a ‘local’ colouring. 

‘Local’ colouring results in faster running programs, but takes a more effort to enter, often many 
entries versus a few. All Sketch functions (e.g. Line a,b,c,d, Circle x,y,r, Plot x,y ) can 
have a colour added to the end of the function, e.g. Circle 1,1,2,ColorCyan. 
 

Note 
Since this program sets Axes Off, etc., and these settings are global settings, when you use another application on 
the fx-CP400 immediately after running this program you may have to reset various settings in the application. 

Use the  menu. 
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3.1 About entering the code for the program named b_randl2. 
	
If you are wondering how all this code is entered, do not worry, you will not have to do that for a 
while! You will be modifying pre-entered code for many activities in this book. 
 

So that you are aware, however, when starting from scratch, code is either entered by: 
a) finding a function/command in a menu and entering it as a “block” and then typing in 

the numbers/letters of the argument(s) from the keyboard as required, 
or 

b) typing the whole lot, if you know where the spaces and capitals and …, need to be. 
	
Functions and commands can also be found in the Catalog on the soft keyboard. 
	
The location of some functions and commands within the menus at the top of the screen, when 
the Program Editor is open, is given below. 
	
Cls 
I/O - Clear 
	
ViewWindow xmin,xmax,scale,ymin,ymax,scale 
Misc – Graph&Table(1) 
 

Set commands 
Misc – Setup(1) to Setup(4) 
	
Lbl-Goto 
Ctrl - Jump 
	
rand(a,b) 
Catalog (on soft keyboard) 
	
If-Then-IfEnd 
Ctrl - If 
	
SetSketchColor colour 
Misc – Setup(4) 
	
ColorRed 
I/O - color 
	
Line a,b,c,d 
I/O - Sketch 
	
Plot x,y 
I/O - Sketch 
	
Circle x,y,r 
I/O - Sketch 
	
Pause 
Ctrl - Control 
	
Message 
I/O – Output 
 

Stop 
Ctrl - Control 
	
If you are a seasoned programmer and are using the ClassPad Manager (software), using the 
menus/catalog to enter code is a slow process, typing is far quicker, but can be less accurate. 
Once you learn the syntax, however, it is the best way. If programming on a Classpad hand-held, 
a mixture of approaches seems to work well. 
 
For now, it is time to borrow another person’s code and modify it! J 
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4. Borrowing and modifying code 
	
	

	
	

 
Launch the Program application. 
 
 
 
 
 

Tap  to create an empty (new) 
program file. 

	 	

	

 
 
 
 
Type in the name Myfirst and press OK. 
 

 
 

You are now ready to borrow some code. 
	 	

	

Tap  and save the changes. 
Open b_randl1 
 
We want to copy all the lines of code in 
this program. 
From the Edit menu choose Select All. 
 
Then, from the Edit menu choose Copy. 
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Tap  and save the changes. 
 
Open Myfirst. 
 
Then, from the Edit menu choose Paste. 
 
 
 
 
 
 
 
 
 
 
 
 
 
You are now ready to modify this code! J 

	
Exercise 2 
The code you have copied into Myfirst will execute the same way as b~randl1. 
 

	
 
The start and end points of each line are not related (they are independent of each other). 
As such the lines are “all over the place”. 
 
Your task is to change the start and end points, so they are related in some way. 
 
For example, not 
Line a,b,c,d ColorGreen 
but 
Line a,b,b,a ColorGreen 
or some other approach. You could try many different things, maybe: 
Line a,b,2a,b ColorGreen 
 
I tried various approaches and came up with the lovely art that follows. 
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First this: 

	
and then these: 
 

							 	
 

and then this: 

	
 
which is what I was aiming to do first but got those other nice patterns while making errors. 
 
Here are some more I made. 
 

       
 
 
What can you create? 
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Exercise 3 
Make a new program called SCWORD. 
 
SCWORD is short for screen-word (or showing a word on screen). 
 
Use 
Line a,b,c,d 
Catalog (on soft keyboard) 
and other commands to create a program that displays EAT! on screen, made from coloured 
lines. 
 
You may like to start by using paper and pencil to draw a cartesian plane so you know where to 
start and end the lines. 
 
 
Exercise 4 
Repeat Exercise 3, but for a word of your choosing, complete with and exclamation mark. 
 
 
Exercise 5 
Repeat Exercise 4, but this time make the program display a flashing exclamation mark. 
 
To do this draw the exclamation mark in a given colour and then re-draw it in a different colour 
and repeat this sequence over and over using: 
Lbl-Goto 
Ctrl - Jump 
as seen in previous programs. 
 
The “flashing” will be slower on a fx-CP400 hand-held compared to the ClassPad Manager 
software. 
 

 
 
Once you have succeeded, add some other flashing elements to your creation. 
 
You may want to graduate from words to a smiling face with a tongue hanging out – like some 
students have done! Below you can see different coloured eye-inners, with is part of the 
animation. 
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5. Dot-to-dot and Pause 
 
Have you ever done a dot-to-dot drawing? 
Can you imagine making an e-version of dot-to-dot but with a difference, given the machine will 
be doing most of the work. How do we ensure the element of surprise for the doer? 
 
	

	

 
Run the program c_dtd1. 
 
Note that the program pauses after drawing a red 
rectangle and some dots. 
 
What could the drawing be, if the dots were joined 
with straight lines in some predetermined order? 
 
 

	
To make the program continue, tap . 
Ooooo – scary! 
 
The complete program can be seen in Appendix 1. 
 
The pause is actioned the command: 
Pause 
Ctrl - Control 
 
Below is an excerpt from the program. 
 

SetSketchColor ColorGreen 
. 
. 
. 
Plot 0,1 
Plot 0,2.1 
Plot 0.4,2.1 
PlotOff 10,10 
 
Pause 
 
SetSketchColor ColorBlack 
Line 0,1,-0.5,2.1 
Line -0.5,2.1,0.1,2.7 
. 
. 
. 

 
Having seen the above example, students were keen to create their own dot-to-dot. 
Below you can see the dot part of one student’s e-dot-to-dot, can you guess what it is? 
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Oh bless, a cute wee squirrel! 
 
I wonder why his eye is like that. It is hardly round. 
 
The student used the command Circle 3.4,1.5,0.2 to draw the eye. 
Can you imagine what the student has not done, assuming they wanted a circle? 
Maybe it has something to do with this line from their program: 
ViewWindow -5,5,1,-4,5,1 
 
Exercise 6 
Create your own e-dot-to-dot. 
 
Start with a paper grid with axes drawn on it, something like that seen below, and then draw your 
‘critter’ and carefully record the coordinates that form it. 
	

	
 
Then start by writing at least the basic structure of the program on paper, before you start to 
enter it into the machine. 
 
Once it is working, share your e-dot-to-dot with your friends. 
 
 
 
 
Note 
The colour in the program c_dtd1, seen in Appendix 1, is handled with the global command, e.g. 
SetSketchColor ColorBlack 
Since fast execution of code is not critical in this case, it is better (from a code entry point of view) to use a single 
line of code for ‘colour definition’. 
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6. The While loop – adding on and on and on …  
 
Consider following: 
 

• "
#
 

 

• "
#
+ "

#×#
 

 

• "
#
+ "

#×#
+ "

#×#×#
 

 
Each of these are sequential steps in a growing string of numbers that are being added together. 
In each step we add on one number and we keep doing this forever. If the denominator of the 
next fraction always has one more × 4 and the numerator is always 1, then the “forever” version 
can be written as follows: 
 

"
#
+ "

#×#
+ "

#×#×#
+ "

#×#×#×#
+ ……+ "

#'
 

 
where 𝑛 is a positive whole number. 
 
Complete the following table for 1 ≤ 𝑛 ≤ 8, giving both fractional and decimal values. 
 

 
𝑛 
 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
. . . 

 
sum 
( 𝑆 ) 

 

 
1
4

 

 
0.25 

 

 
5
16

 

 
0.3125 

 

 
 

 
 

 
 

    
. . . 

 
What do you notice? 
 
Can you suggest what will happen to the value of the sum, 𝑆, as the value of 𝑛 becomes larger 
and larger (as 𝑛 → ∞)? 
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The program called d_fracad will add up a given number of steps. 
You need to supply the number of steps, i.e. the value of 𝑛. 
 

The program uses a While loop to add-on the next step. The program is shown below. 
	

Local A,B,C,N 
SetStandard 
Cls 
 
Lb1 R 
Cls 
 
Input N,"Please give the value of n?" 
 
0⇒A 
4⇒B 
1⇒C 
 
While C≤N 
  A+(1/B)⇒A 
  B×4⇒B 
  C+1⇒C 
WhileEnd 
 
SetStandard 
PrintNatural A 
 
SetDecimal 
ClrText 
Print A 
 
Pause 
 
Goto R 

 

The calculator repeats the calculations in the While 
loop until C>N (while C≤N). 
 

C is the variable that counts the number of times the 
calculations are done. 
 

While-WhileEnd is located in: 
Ctrl - While 
 

≤ is located in: 
Ctrl – Logic (or on the Maths3 keyboard) 

	
	

	
	

	
 
SetStandard 
Misc – Setup(1) 
commands the fx-CP400 to give an exact value output 
(fraction in this case). 
 

Input X,"Text” 
I/O – Input 
defines variable and asks the user for its value. 
 

PrintNatural A 
I/O – Output 
 

SetStandard 
Misc – Setup(1) 
 

ClrText 
I/O – Clear 
 

Print X 
I/O – Output 
 

Local A,B,C,N 
Misc – Variable 
 

The command Local defines the variables A,B,C and 
N, in this case, as local variables that are created when 
the program runs and deleted once the program ends. 
Using this approach means you do not end up with a 
lot of variables in the memory of the fx-CP 400 that 
serve no purpose. 
 

If you look in the Variable Manager, found in the  
menu you will see variables that were defined from 
running the earlier programs, where Local function was 
not used. 

  



- 18 -	

Use d_fracad to compute the sum for larger values of 𝑛. 
What appears to happen to the value of the sum as the value of 𝑛 becomes larger and larger (as 
𝑛 → ∞)? 
Can you “fraction-up” the square, shown below, in a way that would convince another person 
that as 𝑛 → ∞, 𝑆 → 1

3
 ? 

 
 
 
 
 
 
Exercise 7 
Consider the sum: 
 

𝑆2 =
"
4
+ "

4×4
+ "

4×4×4
+ ……+ "

4'
 

 
Make a new program to compute the sum for chosen values of 𝑛. 
I suggest you make a new program, then copy and paste the code from d_fracad into it and then 
modify! J 
 
What happens to the value of 𝑆2 as 𝑛 → ∞? 
 
Exercise 8 
Consider the sum: 

𝑆2 =
"
5
+ "

5×5
+ "

5×5×5
+ ……+ "

5'
 

 
What happens to the value of 𝑆2 as 𝑛 → ∞? 
 
Exercise 9 
Consider the sum: 

𝑆2 =
"
6
+ "

6×6
+ "

6×6×6
+ ……+ "

6'
 

 
What happens to the value of 𝑆2 as 𝑛 → ∞? 
 
Exercise 10 
Consider the sum: 

𝑆7,2 =
"
7
+ "

7×7
+ "

7×7×7
+ ……+ "

7'
 

 
Can you suggest what happens to the value of 𝑆7,2 as 𝑛 → ∞? 
 
Can you prove that your suggestion is correct? 
 
Exercise 11 
Consider the sum: 

𝑆2 = 1 + 9
:
+ #

;
+ <

96
+  ……+9'=>

:'=>
 

 
What happens to the value of 𝑆2 as 𝑛 → ∞? 
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7. If-Then-Else-IfEnd within a While loop. Can you guess 
    my number? 
 
The program named e_guess, randomly selects a positive integer from the set 
{1,2,3, …, 1000} and prompts you to guess the integer. 
 
When you enter your guess, the program determines if your guess was greater than or less than 
the positive integer it selected. 
 
You are then prompted to guess again, and so on, until you enter a correct guess. 
 
The program will then report how many guesses you made. 
 
Play this game a few times. Play a few more times and see how good you can become. 
 

	

														 	
	

I	kept	guessing	…	
	

	
	
	

	
	
Exercise 12 
Before turning the page to look at the code in e_guess, sketch out what you think the program is 
doing and what commands might be required. 
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The code below is the main part of e_guess. 
 
 

Local s,g,n 
ClrText 
0⇒n 
rand(1,1000)⇒s 
 
Input g,"I selected a positive integer under 1001. Guess what it is." 
 
 
While g≠s 
 
  1+n⇒n 
 
  If g<s 
    Then 
      Message "Your guess is LESS than my selected positive integer." 
    Else 
      Message "Your guess is MORE than my selected positive integer." 
  IfEnd 
 
  Input g,"What is your guess now?" 
 
WhileEnd 
 
 
Message "You got it!" 
Print "It took you" 
Print n 
Print "guesses." 

 
 
rand(a,b) can be located in: 
catalog (on soft keyboard) 
 
While G≠S, the If-Then-Else-IfEnd loop repeatedly reports if the current guess is too small 
or too large. 
 
The program pauses and waits for you to guess, thanks to the two input command lines: 
Input g,"I selected a positive integer under 1001. Guess what it is." 
Input g,"What is your guess now?" 
 
Input X,”Text” can be located in: 
I/O - Input 
 
The line 
Print n 
prints the current value of n. 
 
Print can be located in: 
I/O - Output 
 
Exercise 13 
A bug exists in this code. If the user guesses correctly on their first guess, the program does not 
quite work correctly. Study the code and determine what happens. Squish the bug! 
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The complete form of e_guess is given below. 
The additional lines, to those shown on the previous page, are shown in bold. 
 
 

Local s,g,n 
ClrText 
0⇒n 
rand(1,1000)⇒s 
 
Lbl again 
 
Input g,"I selected a positive integer under 1001. Guess what it is." 
 
If int(g)≠g 
   Then 
   Goto again 
IfEnd 
 
While g≠s 
 
  1+n⇒n 
 
  If g<s 
    Then 
    Message "Your guess is LESS than my selected positive integer." 
    Else 
    Message "Your guess is MORE than my selected positive integer." 
  IfEnd 
 
  Lbl again2 
  
  Input g,"What is your guess now?" 
 
  If int(g)≠g 
    Then 
    Goto again2 
 IfEnd 
 
WhileEnd 
 
Message "You got it!" 
Print "It took you" 
Print n 
Print "guesses." 

 
 

The additional lines act as a catch, stopping the user entering a guess that is not an integer. Note 
there are no catches for negative number or numbers greater than 1000. 
 

The command int(g) calculates the integer part of the current value G. 
For example int(2.34) = 2 
int(x) can be located in: 
catalog (on soft keyboard) 
 

Exercise 14 
A simpler form of this guessing/checking process would be for the program to randomly choose 
the number 0 or 1 and then the player has to guess which number the program chose. 
 

Make a program that performs this simpler guessing/checking process 5 times in a row and the 
program reports how many times the player guessed correctly. 
 

Once you succeed, modify your program so the player can set the number of times the 
guessing/checking process occurs. 
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8. Animation, using a For-Next loop 
	
Run the program f_anim1. 
	
	

 

 
 

	 	
While the image seen right does not show the action, it 
does display one ‘frame’ of the action. 
 
The illusion of movement (animation) is created by the 
process of drawing an image, erasing that image and 
drawing another image nearby and then repeating this 
over and over. 
 
Did you notice that the projectile changes length, as 
though it is elastic? 
 

 
 

  
Here are the lines of code that produce the animation. 
Not too many lines at all. 
	
	

Local x 
ViewWindow -7.7,7.7,1,-4.4,4.4,1 
SetAxes Off 
SetGrid Off 
SetLabel Off 
SetCoord Off 
 
Lbl A 
 
Cls 
 
For -3⇒x To 3 Step 0.2 
  Line x,3x^2,x+0.4,3(x+0.4)^2,ColorBlack 
  Cls 
Next 
 
Goto A 

 

 

 
 
 
 
 
 
 
 
 
 
Reminder 
Since this program sets Axes Off, etc., and these settings are global settings, when you use the fx-CP400 
immediately after running this program you may have to reset the settings in the application you are using. 
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The heart of this program are the following lines of code. 
 

For -3⇒x To 3 Step 0.2 
  Line x,3x^2,x+0.4,3(x+0.4)^2,ColorBlack 
  Cls 
Next 

 
The Line command is executed over and over again under the direction of the For-Next loop. 
The variable x controls how many times the For-Next loop is repeated and the position of the 
start and end of the line drawn. 
 
For-Next can be located in: 
Ctrl - For 
 
Exercise 15 
Change the value of 0.2 to 1, in the line: 

For -3⇒x To 3 Step 0.2 
 
Describe the effect of this change. Experiment with other values to create the opposite effect. 
 
Exercise 16 
Time to spice this program up a little. 
 

a) Modify the program so the projectile is a colour other than black. 
b) Modify the program so the projectile is a different colour on the way up to the way down. 
c) Modify the program so the two projectiles are launched, one from left to right and one 

from right to left. 
 
Exercise 17 
Modify the program so the projectile’s path is something other than a parabola. 
For example, change 3-A^2 into 3-A. 
Can you predict what change that will make to the projectile’s path? 
Experiment with other changes that give different paths. 
 
Exercise 18 
Run the program f_anim2. 
Does it provide the illusion of 3-dimensional motion to you; a falling-spinning stick? 
 
The code for f_anim2 can be found in Appendix 2. 
 
Also included in the program set is a program called f_anim2, which results in the same 
animation as f_anim3, but it handles colouring the lines in the alternate manner. 
Do you notice a difference in the speed of rotation? 
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9. Square roots, using a For-Next loop 
 
Have you ever wondered how a calculator figures out a decimal approximation for the square 
root of a number – e.g. √24 ? 
 
One way is for it to carry out a recursive process that can be described as follows: 

• take a guess at the answer 
• do a calculation using the guess 
• the calculation gives a result that is more accurate 
• use this result to do the calculation again and then 
• keep repeating this over and over until the newest result is as accurate as required. 

 
If we wish to calculate an approximation for √𝑆, the guess is 𝑥2 and the first/next result is 
𝑥2B"then the calculation and process can be described as 
 

𝑥2B" =
1
2 C𝑥2 +

𝑆
𝑥2
D 

 

This process is the result of using Newton’s Method to solve 𝑥9 − 𝑆 = 0. 
 

You can read about it at https://en.wikipedia.org/wiki/Methods_of_computing_square_roots. 
 
Before we use a program to do this, we will first do some calculations, so we gain an appreciation 
of the process. 
 
Exercise 19 
Let 𝑆 =17 and let the guess, 𝑥G, for the value of √17 be half of 17 (8.5). 
One step in the recursive process is called an iteration. 
Do 5 iterations. 
Iteration one and two are given below. 
Finish off the process. 
 

Iteration 1: 

𝑥" =
1
2 C
𝑥G +

𝑆
𝑥G
D 

 

𝑥" =
1
2 C
8.5 +

17
8.5D

= 5.25 

 
Iteration 2: 

𝑥9 =
1
2 C
𝑥" +

𝑆
𝑥"
D 

 

𝑥9 =
1
2 C
5.25 +

17
5.25D

= 4.244047619 
 
Iteration 3: 

𝑥: =
1
2 C
𝑥9 +

𝑆
𝑥9
D 

 

Compare your value for 𝑥4 with that of other people. 
 

4.123106 is the value of √17, correct to six decimal places. How close was 𝑥4 to 4.123106? 
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The recursive (looping) nature of this process lends itself to computer automation. 
A For-Next loop can be employed. 
 
The program called g_sqrt1 automates this process. 
 
In the previous exercise you were told to make the guess one-half of the value of 𝑆. 
We use the same guess in this code. 
 
The main part of the code is shown below. 
	
 

ClrText 
SetDecimal 
Local x,i,I,S 
 
Input S,"What square root do you 
require?" 
S/2⇒x 
 
Input I,"How many iterations?" 
 
For 1⇒i To I Step 1 
   (1/2)*(x+(S/x))⇒x 
   Print x 
   Pause 
Next 
 
Stop 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The heart of this program is the following lines of code. 
 
For 1⇒i To I Step 1 
   (1/2)*(x+(S/x))⇒x 
   Print x 
   Pause 
Next 
 
The calculation (1/2)*(X+(S/X))	⇒X, is executed over and over again under the direction of 
the For-Next loop. 
The variable I controls how many times the For-Next loop is repeated. 
 
For-Next can be located in: 
Ctrl - For 
 
Run g_sqrt1 and calculate √17 with 
5 iterations. 
 
Check the output against the calculations you made in 
the previous exercise. 
 
A partial output is shown opposite. 
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The complete g_sqrt1 program is shown below. 
 
Note the bold lines, which were not shown on the previous page. 
The extra code is a catch for an excessive number of iterations being entered by the user. 
 

ClrText 
SetDecimal 
Local x,i,I,S 
 
Input S,"What square root do you require?" 
S/2⇒x 
 
Lbl set_its 
Input I,"How many iterations?" 
 
If I>40 
   Then 
   Message "To conserve your taps, do less than 41. :)" 
   Goto set_its 
IfEnd 
 
For 1⇒i To I Step 1 
   (1/2)*(x+(S/x))⇒x 
   Print x 
   Pause 
Next 
 
Stop 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Exercise 20 
Suppose you want to find the √2	000	000	000. 
Use g_sqrt1 to determine how many iterations are required to find √2	000	000	000 such that the 
4th decimal place is correct. 
 
Exercise 21 
Experiment with numbers of the form 2	 × 102 to see whether or not a relationship exists 
between the number of iterations and 𝑛, for a given degree of accuracy. 
 
9.1 Programs as functions - g_sqrt2 
 

g_sqrt2 does the same as g_sqrt1, but with less code, 
less output and it can run in both the Program 
application and the Main application. 
 

S and I are defined to be the arguments/parameters of 
g_sqrt2, i.e. g_sqrt2(S,I). 
This is done by entering them in the field top right. 
 

If g_sqrt2 is run in Program, enter the values of S and I 
in the parameter field, e.g. 2000,15. 
 

If run in Main, enter as shown below. 
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10. If-Then-IfEnd inside a For-Next; is that number prime? 
	
Is 65 701 a prime number? 
 

One way to figure out whether or not 65 701 is prime is to divide it by 2, 3, 4, 5, ….. , 
int( √65	701 ). 
That is quite a bit of work and something a computer can do. 
 

Advanced calculators and some mathematical software are equipped with a function called 
something like “isPrime”, which simply states prime or not. The user, however, rarely gets to see 
how the function actually works, it is just black-box magic! 
 

h_iprim1 is a program, shown below, that actions one algorithm that determines whether or not 
a positive integer, 𝑛, is prime. 
 

The algorithm divides 𝑛 by 2, then 3, then 4, then 5, then ….. and stops after reaching the integer 
value of √65	701. 
 
 

Local i,n 
 
ClrText 
 
Lbl integer 
 
Input n,"Which integer do you want to test for primality ?" 
 
If int(n)≠n 
   Then 
   Message "That is not an integer!" 
   Goto integer 
IfEnd 
 
For 2⇒i  To int(√(n)) Step 1 
 
   If int(n/i)=n/i 
     Then 
     Print n 
     Print "is not prime." 
     Print "It is composite." 
    Goto end 
   IfEnd 
 
Next 
 
Print n 
Print "is prime." 
 
Lbl end 
 
Stop 

 
 
Note the section in red print (above) is a catch for non-integer entries. 
 
Also note that the If-Then-IfEnd block in green print lies inside the For-Next loop. 
Thus the If-Then-IfEnd block is executed every time the For-Next loop loops. 
In this program, the For-Next loop does not necessarily loop for the maximum possible number 
of times, as set by the value of n, because of the presence of the Goto jump. 
The Goto end line, if actioned, will short cut the process, as we only need to find one number 
that divides n with zero remainder. 
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Exercise 22 
Run h_iprim1 and try it out for numbers, both prime and not prime under 10,000. 
 
Some primes under 10,000 are: 
3659 
6763 
8429 
9931 
 
Be sure to try some composite numbers to check the program has no bugs. 
 
Write down the time taken by the longest computation. 
 
Exercise 23 
Now try some larger primes but under 100,000. Here are three: 

• 30011 
• 68909 
• 97579 

 
Write down the time taken by the longest computation. 
 
Exercise 24 
What about 1246537? 
Is it prime? How long did it take to determine whether or not it was? 
 
Exercise 25 
Test each of the following numbers for primness and record the time taken (𝑡) by the program to 
determine whether or not the number was prime. 
 

• 7 
• 73 
• 739 
• 7393 
• 73939 
• 739391 
• 7393913 
• 73939133 

 
Let 𝑙 be the logarithm of the number being tested. 
Draw a graph of 𝑙 vs 𝑡. 
 
Exercise 26 
Run h_iprim1 again and this time test a negative number for primness, e.g. – 29 . 
Describe what happened and why it happened. 
Modify the program to include a catch for entering negative numbers. 
You might find the absolute value function (abs(x) or | |) a useful tool. 
 
abs(x) or | | can be located: 
On the Maths1 soft keyboard 
or in the Catalog (on the soft keyboard) 
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Exercise 27 
h_iprim1, does not contain a fast algorithm. 
If it determined that 2 did not divide N, then there is no point in dividing by all of the other even 
numbers, as it currently does. 
Modify this program so that it avoids doing all those unnecessary divisions by even numbers. 
Does this modification result in a speed improvement? 
 
Exercise 28 
Consider the program h_iprim2, shown below. 
It employs a different algorithm than that used in h_iprim1. 
Study the code and describe the different algorithm. 
Determine whether or not the algorithm used is faster than the one used in h_iprim1 by using 
the numbers from Exercise 24. 
	

Local i,n 
 
ClrText 
 
Lbl integer 
 
Input n,"Which integer do you want to test for primality ?" 
 
If int(n)≠n 
  Then 
  Message "That is not an integer!" 
  Goto integer 
IfEnd 
 
For 2⇒i To 3 Step 1 
   If int(n/i)=n/i 
     Then 
     Print n 
     Print "is not prime." 
     Goto end 
   IfEnd 
Next 
 
For 1⇒i To int((√(n)+1)/6) Step 1 
   If int(n/(6i-1))=n/(6i-1) 
     Then 
     Print n 
     Print "is not prime." 
     Goto end 
   IfEnd 
Next 
 
For 1⇒i To int((√(n)+1)/6) Step 1 
   If int(n/(6i+1))=n/(6i+1) 
     Then 
     Print n 
     Print "is not prime." 
     Goto end 
   IfEnd 
Next 
 
Print n 
Print "is prime." 
 
Lbl end 
 
Stop 
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Exercise 29 
Study the program h_iprim3, shown below. It takes a different approach to h_iprim2.  

 
Local n,i,k,d 
ClrText 
Lbl integer 
 
Input n,"Which integer do you want 
to test for primality ?" 
 
If int(n)≠n 
  Then 
  Message "That is not an integer!" 
  Goto integer 
IfEnd 
 
For 2⇒i To 3 Step 1 
   If int(n/i)=n/i 
     Then 
     Print n 
     Print "is not prime." 
     Goto end 
   IfEnd 
Next 
 
1⇒k 
1⇒d 
 
While d<int(√(n)) 
 
   6k-1⇒d 
 
   If int(n/d)=n/d 
     Then 
     Print n 
     Print "is not prime." 
     Goto end 
   IfEnd 
 
   k+1⇒k 
 
WhileEnd 
 
1⇒k 
1⇒d 
 
While d<int(√(n)) 
   6k+1⇒d 
   If int(n/d)=n/d 
     Then 
     Print n 
     Print "is not prime." 
     Goto end 
   IfEnd 
 
   k+1⇒k 
 
WhileEnd 
 
Print n 
Print "is prime." 
 
Lbl end 
Stop 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After studying the code, explain the 
different approach. 
 
Try it out. Is it faster than h_iprim2? 
Document your findings. 
 
Use h_iprim3 to test these two monsters: 

• 591558727 
• 5915587277. 

Time accurately. 
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11. Whiles inside Ifs, (Whiles inside Ifs) inside Whiles – 
      finding prime factors 
	
The h_iprim* set of programs determines whether or not a positive integer is prime. 
As such the algorithm needs to only check up to the square root of N. 
But what if we wanted to determine the prime factors of N, how could this be done, particularly 
if N was a large number, either prime or composite ? 
 

The program i_pfact determines the prime factors of positive integers. 
 

Exercise 30 
Before looking at the code in i_pfact (next page), figure out how you would determine, without a 
program, all of the prime factors of 300. 
 

Write out a clear set of steps that a young person, who only knows the basics of number, could 
understand. 
 

Exercise 31 
Run the program i_pfact. 
Start with ‘sanity’ check with numbers – like 19, 25 and 50 – to be sure you are confident the 
program is working well enough. Then try 300. 
 

                  
 

Finally use i_pfact to find the prime factorisation of each of the following numbers. 
 

• 8 
• 74 
• 740 
• 2310 
• 7394 
• 73941 
• 739413 
• 7394133 
• 73939133 
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Exercise 32 
Study the i_pfact code below. Write down an explanation of how it works. 
frac(X) is a command that determines the fraction part of X. 
For example, frac(12.8) = 0.8 
 

frac(X) can be located in: 
Catalog (on the soft keyboard) 
 
 

Local n,d 
 
ClrText 
 
Lbl integer 
 
Input n,"For which integer would you like the prime factors ?" 
2⇒d 
 
If abs(int(n))≠n 
  Then 
  Message "That is not an positive integer!" 
  Goto integer 
IfEnd 
 
Print "The prime factors are:" 
 
If frac(n/d)=0 
  Then 
 
  While frac(n/d)=0 
    Print d 
    n/d⇒n 
  WhileEnd 
 
  3⇒d 
  Else 
  3⇒d 
IfEnd 
 
While d≤n 
 
  If frac(n/d)=0 
    Then 
 
    While frac(n/d)=0 
       Print d 
       n/d⇒n 
    WhileEnd 
 
    d+2⇒d 
    Else 
    d+2⇒d 
 
  IfEnd 
 
WhileEnd 
  
Print "That is all there is! :)" 
Stop 

 
Exercise 33 
If you found i_pfact to be slow, especially as the input integers became larger, then you have a 
challenge. Develop a faster algorithm or google one and code it up. 
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12. Writing code in a text file and importing it to the 
      fx-CP400 
 
Entering code directly into a fx-CP400 handheld can be surprisingly easy if you are adept at 
finding all of the functions/commands and know the related syntax. See Appendix 4. 
 
If you are a confident coder and have a good eye and high regard for correct syntax, it is possible 
to type the code on a computer, saving as a text file (.txt), and then transfer the text file to the 
fx-CP400 handheld. 
The text file can be converted to the correct format, Normal, and then run on the fx-CP400. 
 
Full details about this process can be found at: 
https://support.casio.com/storage/en/manual/pdf/EN/004/ClassPadII_UG_EN.pdf 
Section 12-1, page 201. 
 
If using the ClassPad Manager software, choosing resizable mode and typing on the computer’s 
keyboard makes for easy code entry. 
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13. Projects 
 
Each of the following projects can be approached by creating a program that will do the 
repetitive parts of the work required. 
 
 
Project 1 – Find the number 
Find the smallest positive integer, 𝑛, for which √𝑛 − √𝑛 − 1 < 0.01. 
 
 
Project 2 - DS 
231 is a three-digit number. 
The digit sum of 231 is 6. 
How many three-digit numbers have a digit sum of 6? 
 
How many three-digit numbers have a digit sum of 1? 
How many three-digit numbers have a digit sum of 2? 
How many three-digit numbers have a digit sum of 3? 
… 
 
You get the idea. Observe, wonder and make a conjecture. Answer the question, “Why?”. 
 
 
Project 3 - Sqtrinums 
36 is both a square number and a triangle number. It is the smallest such number. Let such 
numbers be called sqtrinums. 
1225 is the next smallest sqtrinum. Find the next four lowest sqtrinums. 
 
 
Project 4 - Darts 
Three darts are thrown at a rectangular board that is divided into three sections. If a dart lands in 
section 1 the player earns 8 points; 10 points are earned for section 2 and 12 points for section 3. 
 
Assuming: 

1) a shot is one throw of each dart 
2) each dart lands in one of the three sections 
3) the score for a shot is the sum of the points earned, 

how many different scores are possible and what are they? 
 
Project 5 - Riffle 
One example of a card shuffling technique is called the riffle. 
You can read about it at https://en.wikipedia.org/wiki/Shuffling#Riffle 
How many riffles does it take to return each card in a pack to the position they had before the 
first riffle? 
Does it depend? 
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Appendix 1 – c_dtd1 
	
ViewWindow -7.7,7.7,1,-4.4,4.4,1 
SetAxes Off 
SetGrid Off 
SetLabel Off 
SetCoord Off 
 
Lbl A 
 
SetSketchColor ColorGreen 
Cls 
 
Line 0.1,-2,0.1,-0.5,ColorRed  
Line 0.15,-2,0.15,-0.5,ColorRed 
Line 0.2,-2,0.2,-0.5,ColorRed 
Line 0.25,-2,0.25,-0.5,ColorRed 
 
Plot 0,1 
Plot -0.5,2.1 
Plot 0.1,2.7 
Plot 0.9,2.1 
Plot 0.6,1 
Plot 1.4,0.9 
Plot 1.3,4.2 
Plot 2,2.8 
Plot 1.9,0.8 
Plot 2.6,0.9 
Plot 2.6,4 
Plot 3.2,2.2 
Plot 3.2,0.4 
Plot 1.2,0.3 
Plot 3.6,-0.4 
Plot 2.2,-3.9 
Plot 3,-0.9 
Plot 2.4,-0.4 
Plot 1.4,-3.6 
Plot 1.8,-0.5 
Plot 0.6,-0.1 
Plot 1.2,-1.9 
Plot 0.3,-3 
Plot -0.6,-1.9 
Plot -0.3,-0.1 
Plot -1.2,-0.3 
Plot -0.8,-3.6 
Plot -1.8,-0.5 
Plot -2.5,-0.7 
Plot -1.7,-3.9 
Plot -3,-0.3 
Plot -0.5,0.3 
Plot -2.6,0.4 
Plot -2.6,2.2 
Plot -1.9,4 
Plot -2,0.8 
Plot -1.3,0.8 
Plot -1.4,2.8 
Plot -0.8,4.2 
Plot -0.9,0.9 
Plot 0,1 
Plot 0,2.1 
Plot 0.4,2.1 
PlotOff 10,10 
Pause 
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SetSketchColor ColorBlack 
Line 0,1,-0.5,2.1 
Line -0.5,2.1,0.1,2.7 
Line 0.1,2.7,0.9,2.1 
Line 0.9,2.1,0.6,1 
Line 0.6,1,1.4,0.9 
Line 1.4,0.9,1.3,4.2 
Line 1.3,4.2,2,2.8 
Line 2,2.8,1.9,0.8 
Line 1.9,0.8,2.6,0.9 
Line 2.6,0.9,2.6,4 
Line 2.6,4,3.2,2.2 
Line 3.2,2.2,3.2,0.4 
Line 3.2,0.4,1.2,0.3 
Line 1.2,0.3,3.6,-0.4 
Line 3.6,-0.4,2.2,-3.9 
Line 2.2,-3.9,3,-0.9 
Line 3,-0.9,2.4,-0.4 
Line 2.4,-0.4,1.4,-3.6 
Line 1.4,-3.6,1.8,-0.5 
Line 1.8,-0.5,0.6,-0.1 
Line 0.6,-0.1,1.2,-1.9 
Line 1.2,-1.9,0.3,-3 
Line 0.3,-3,-0.6,-1.9 
Line -0.6,-1.9,-0.3,-0.1 
Line -0.3,-0.1,-1.2,-0.3 
Line -1.2,-0.3,-0.8,-3.6 
Line -0.8,-3.6,-1.8,-0.5 
Line -1.8,-0.5,-2.5,-0.7 
Line -2.5,-0.7,-1.7,-3.9 
Line -1.7,-3.9,-3,-0.3 
Line -3,-0.3,-0.5,0.3 
Line -0.5,0.3,-2.6,0.4 
Line -2.6,0.4,-2.6,2.2 
Line -2.6,2.2,-1.9,4 
Line -1.9,4,-2,0.8 
Line -2,0.8,-1.3,0.8 
Line -1.3,0.8,-1.4,2.8 
Line -1.4,2.8,-0.8,4.2 
Line -0.8,4.2,-0.9,0.9 
Line -0.9,0.9,0,1 
 
Plot 0,2.1 
Plot 0.4,2.1 
PlotOff 10,10 
 
Stop 
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Appendix 2 – f_anim2 
	
Local x 
ViewWindow -4,4,1,-12,1,1 
SetAxes Off 
SetGrid Off 
SetLabel Off 
SetCoord Off 
SetRadian 
 
Lbl A 
 
Cls 
 
For 0⇒x To 7 Step 0.2 
 
  If x<1.7 
    Then 
    SetSketchColor ColorBlue  
  IfEnd 
 
  If (x≥1.7 and x<4.7) 
    Then 
    SetSketchColor ColorRed  
  IfEnd 
 
  If (x≥4.7 and x<6) 
    Then 
    SetSketchColor ColorBlue  
  IfEnd 
 
  Line cos(x),0.7sin(x)-2x,cos(x+3.14),0.7sin(x+3.14)-2x 
  Cls 
 
Next 
 
Goto A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



- 38 -	

Appendix 3 – f_anim3 
	
 
Local x 
ViewWindow -4,4,1,-12,1,1 
SetAxes Off 
SetGrid Off 
SetLabel Off 
SetCoord Off 
SetRadian 
 
Lbl A 
 
Cls 
 
For 0⇒x To 7 Step 0.2 
 
  If x<1.7 
    Then 
    Line cos(x),0.7sin(x)-2x,cos(x+3.14),0.7sin(x+3.14)-2x,ColorBlue   
  IfEnd 
 
  If (x≥1.7 and x<4.7) 
    Then 
    Line cos(x),0.7sin(x)-2x,cos(x+3.14),0.7sin(x+3.14)-2x,ColorRed   
  IfEnd 
 
  If (x≥4.7 and x<6) 
    Then 
    Line cos(x),0.7sin(x)-2x,cos(x+3.14),0.7sin(x+3.14)-2x,ColorBlue   
  IfEnd 
 
  Cls 
 
Next 
 
Goto A 
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Appendix 4 – Functions and commands, where to find 
them 
 
The functions and commands used in the programs in this book can be entered by either: 

• locating them in a menu when the Progam Editor is open, as outlined below, or 
• locating them in the Catalog (on the soft keyboard) or 
• typing them in, with correct syntax. 

 
Some can also be located on the soft key boards tabs, like Math3. 
 
Not all are located in the menus of the Program Editor. 
 
 
≤ 
Ctrl - Logic or 
Math3 on soft keyboard. 
 
 
abs(x) or | | can be located: 
Catalog (on the soft keyboard) 
or on the Math1 soft keyboard 
 
 
Cls 
I/O - Clear 
 
 
ClrText 
I/O – Clear 
 
 
ColorRed 
I/O - color 
 
 
Circle x,y,r 
I/O - Sketch 
 
 
For-Next 
Ctrl - For 
 
 
frac(X) 
Catalog (on soft keyboard) 
 
 
Line a,b,c,d 
I/O - Sketch 
 
 
If-Then-IfEnd 
Ctrl - If 
 
 
int(X) 
Catalog (on soft keyboard) 
 
 
Input X,"Text” 
I/O – Input  
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Lbl-Goto 
Ctrl – Jump 
 
 
Local A,B,C,N 
Misc – Variable 
 
 
≤  
Ctrl – Logic or Math3 on soft keyboard. 
 
 
Message 
I/O – Output 
 
 
Pause 
Ctrl - Control 
 
 
Plot x,y 
I/O - Sketch 
 
 
Print X 
I/O – Output 
 
PrintNatural A 
I/O – Output 
 
 
rand(a,b) 
Catalog (on soft keyboard) 
 
 
Set commands 
e.g. SetStandard, SetDecimal, SetRadian, SetStandard 
Misc – Setup(1) to Setup(4) 
 
 
SetSketchColor colour 
Misc – Setup(4) 
 
 
Stop 
Ctrl - Control 
 
 
ViewWindow xmin,xmax,scale,ymin,ymax,scale 
Misc – Graph&Table(1) 
 
 
While-WhileEnd 
Ctrl - While 
 
 
 
 
 
 
For further information see Chapter 8 of 
http://support.casio.com/storage/en/manual/pdf/EN/004/fx-CG50_Soft_v320_EN.pdf 
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