fbpx
  • Clear Filters
  • Select Categories

  • Select Technology

  • Filter by State

  • Filter by Year Level

Seeing doubleNEW 

These resources provide a dynamic way to introduce and understand the Distributive Law of Multiplication and the Perfect Square Identity. Similar in structure, they use animation to explain the difference between a variable and a constant, and then move on …


Rugby Conversion Kicks and the Application of Right-Angled Trigonometry

From the sporting context of a rugby player attempting a conversion kick comes an application of right-angled trigonometry. The question “where to kick from?” leads to the consideration of how an angle of view changes as distances change and ultimately …

Rugby Conversion Kicks | Application of Right-angled Trigonometry


Rugby Conversion Kicks and the Application of Right-Angled Trigonometry – Teacher Edition

From the sporting context of a rugby player attempting a conversion kick comes an application of right-angled trigonometry. The question “where to kick from?” leads to the consideration of how an angle of view changes as distances change and ultimately …

Rugby Conversion Kicks | Application of Right-angled Trigonometry


Simplex & The Science Of Burger Making

The simplex algorithm, sometimes dubbed the world’s most powerful, sits at the heart of linear programming. Classically the subject of tertiary-level study, Dantzig’s simplex algorithm can be used to solve important problems like how to make a ‘better’ burger patty. …

Simplex Algorithm & The Science Of Burger Making


DOGBALL 2.0 – A Study of Bounce – Part 1

Dogball is an enigma. The bouncy toy exterior hides a rich yet accessible modelling task within; a delicious intersection of maths and science, a potential PSMT/Folio task for Stage 1 Mathematical Methods featuring low floor, high ceiling and room for …

Dogball | A Study of Bounce


DOGBALL 2.0 – A Study of Bounce – Part 2 (Solution)

Below is a video outlining a solution answering the questions posed in the resource “Dogball 2.0 – A Study of Bounce – Part 1“. It is not intended to be the best or only way to answer these questions. It …

Dogball | A Study of Bounce


As Big As Can Be

The introductory videos introduce students to a complete unit of work, a study of quadratic functions. The unit starts with a geometric optimisation problem (paper folding) that prompts students to ask the question “is that as big as can be?” …

As Big As Can Be | Study of Quadratic Functions


Cup Snakes – Describing Linear Change

A video introduction presents the mathematics of cup snakes, a hands on phenomena involving additive change that gives rise to a way to think about linear growth. Modeling this phenomena theoretically, with the help of two cups, and through data, with the help of many, many cups, these videos give rise to some of the big ideas around developing and using linear algebraic models to describe additive bi-variate change. These ideas are then unpacked in the accompanying ‘chapter replacement’ booklet.

Cup Snakes – Describing Linear Change


Pigs, Pens and Mathematics

Pigs, pens and mathematics is a two to four lesson, tried and proven, activity that moves students from measurement-thinking to functional-thinking with the help a simple but rarely used idea – do not evaluate a calculation.
A small, but authentic and enlightening use of electronic technology is made.
It would fit perfectly in a measurement topic at any of the years 8 to 11.
In this collection of resources you will find:
a) a two-part introductory video, that can be played to the class to kick things off,
b) one support video that shows “how to” do the technical stuff on the CG 20 AU,
c) one support video that explores the mathematical ideas that can be developed with the help of the technology,
d) one ‘task sheet’ for students to work on after watching the videos or being instructed by the teacher,
e) a complete ‘unit of work’ that allows students to consolidate the mathematical ideas and skills they have learned.

Pigs, Pens and Mathematics

Category:
Technology:

Year Level: , , ,
State: , , , , , , ,


Flow – Ideas that underpin Differential Calculus

Presented here is a tried and proven three to five lesson sequence that begins with an engaging real-world context and grows students from the idea of average rate of change to instantaneous rate of change.

It is accessible to any student who has an understanding of average and gradient.

In this collection of resources you will find: a) a three-part introductory video (I, IIa and IIb), which structures the sequence of learning, b) two support video that shows “how to” do the technical stuff on the CG 20 AU.

Flow Ideas that underpin Differential Calculus

Category:
Technology:

Year Level: , , , ,
State: , , , , , , ,